### **Hydraulics 101 – Part II**

David T. Williams DTW and Associates Fort Collins, CO david@dtwassoc.com



Distribution of the webinar materials outside of your site is prohibited. Reproduction of the materials and pictures without a written permission of the copyright holder is a violation of the U.S. law.

### **Course Outline, Part II**

- Shear Stress at Bends
- Bridge Hydraulics and Scour
- Culverts
- Weirs
- Channel Stability
- Grade Control







### **Shear Stress in a Bend**

 $\tau_{b} = K\gamma_{w}RS_{f}$ 

 $K = 2.5(R_c/W)^{-0.321}$ 

### Where:

 $\tau_{\text{b}}$  = shear stress at the outside of a bend

R = hydraulic radius

K = coefficient for bend shear stress related to  $R_c/W$ 

 $R_c$  = bend curvature (radius of the bend)

W = top width of the channel

)

### **Determining Bend Radius**



Draw tangents to river centerline along curve, make perpendicular lines from the tangents, find intersection closest to the centerline, and average the lengths of the two perpendicular lines

7

### **Example 3**

- The TRM bare soil covered channel from example 2 in Part 1 is to go around a bend with a radius of curvature of 50 feet. Will the TRM be able to handle the additional shear stress on the outside?
  - o From the hydraulic calculations, the top width of the water was 18.0 feet so therefore  $R_c/W = 50/18 = 2.8$
  - $\circ$  The adjustment factor for bends is K = 2.5(R<sub>c</sub>/W)<sup>-0.321</sup> = 2.5(2.8)<sup>-0.321</sup> = 1.8
  - $\circ~$  From example 2,  $\tau_{o}$  = 2.93 lb/ft² therefore  $\tau_{b}$  = 2.93 x 1.8 = 5.27 lb/ft²
  - $\circ\,$  NAG 550 had been selected and its allowable shear stress was 3.25  $\,$  lb/ft²
  - The TRM will not work, so need to go up to at least Pro/Enka II = 10 lb/ft² (see next slide)

### Example 3, continued

Dotted red line was selected for straight channel for velocity of 10.4 ft/s and shear stress =  $2.93 \text{ lbs/ft}^2$  (C350 was too close)

Solid red line is selected for outside of curve at shear stress =  $5.27 \text{ lb/ft}^2$ 

| Turf Reinforced Mats (TRM)     |                            |                               |
|--------------------------------|----------------------------|-------------------------------|
| TRM                            | v <sub>max</sub><br>(ft/s) | t <sub>all</sub><br>(lbs/ft²) |
| NAG, SC250; bare soil          | 9.5                        | 2.50                          |
| NAG, C350; bare soil           | 10.5                       | 3.00                          |
| NAG, P550; bare soil           | 12.5                       | 3.25                          |
| Pro/Enka II; bare soil         | 13.0                       | 10.0                          |
| Pro/Enka, 7220, BFM, vegetated | 14.0                       | 8.0                           |
| NAG, C350; vegetated           | 20.0                       | 10.0                          |
| NAG, P550; vegetated           | 25.0                       | 12.5                          |



### **Bend Shear Stress Extents**

(Rozovskii, adopted by Clark Co., NV)

$$X = 2.3 (C / g^{1/2}) Y = (0.6 Y^{1.17})/n$$

Where:

X = distance from end of channel curvature (PT) to downstream point at which secondary currents have dissipated, (ft)

 $C = Chezy coefficient = (1.486/n) R^{1/6}$ 

g = gravitational acceleration, (32.2 ft/s<sup>2</sup>)

y = depth of flow - use maximum flow depth, exclusive of bend scour, within bend, (ft)

n = Manning's roughness coefficient

1:

### **Bend Shear Stress Extents**

- A conservative estimate of longitudinal extent of the extra shear stress due to the bend, both upstream and downstream of the curve, is to assume it extends:
  - o a distance X upstream of point of curvature (P.C.), and
  - a minimum of 2 times X downstream of point of tangency (P.T.)
- Do not forget that the bend causes the water surface elevation to rise on the outside of the bend, so any protection should extend high enough to account for this.

### **Example 4**

- From example 3, what are the longitudinal extents that the bank protection should be placed?
  - o From the hydraulic calculations, the flow depth, Y, was 2.35 ft.
  - o For n = 0.025 and extent =  $X = 2.3 (C/g^{1/2}) Y = (0.6 Y^{1.17})/n$
  - $\circ$  = (0.6 x 2.35<sup>1.17</sup>)/0.025 = 65 ft.
  - From recommendations using previous slide, install protection 65 feet upstream of the point of curvature (P.C.) and 2 x 65 = 130 feet downstream of the point of tangency (P.T.).
  - Don't forget to vertically extend the outside of the bend to account for super elevation.

13

### **Bridge Hydraulics**

- Section 4 to 3: contraction zone
- Section 3 to 2: between abutments
- Section 2 to 1: expansion zone
- CR is contraction ratio
- ER is expansion ratio



### **Bridge Scour Considerations**

- Contraction Scour
- Channel Scour/Degradation
- Abutment Scour
  - o Shape of abutment
  - Amount of water captured in O/B
- Pier Scour
  - o Size
  - o Water angle of attack
- Debris Build-up
- Bed Forms (e.g., dunes)









### **Abutment Scour**











### **Long-term Degradation**

Scour depth due to long term degradation is the difference between existing slope and the long term equilibrium slope at a given location upstream from a stable "pivot" point.



### **Long-term Degradation**

$$y_{lt} = (S_0 - S_L) L$$

Where:

y<sub>lt</sub> = long term degradation, (ft)

S<sub>0</sub> = existing channel slope, (ft/ft)

S<sub>L</sub> = equilibrium slope, (ft/ft)

L = distance between downstream control point and point of interest, (ft)

### **Design Considerations for Scour**

- Scour analysis is required for design and evaluation of channels and hydraulic structures such as bank protection, bridges, culverts, grade-control structures and utilities.
- The scour components to be considered will depend on the structures present, the bed material, presence of bends, etc.

25

### **Design Considerations for Scour**

- Factors to be considered in determining scour depths include:
  - Long-term degradation and aggradation, general scour, and local scour at structures that affect flow.
  - o For sand bed streams, bed forms.
  - Bend scour if bends are present the increased water surface elevation due to super elevation must be taken into consideration.
  - Ensure aggradation has not caused an increase in water surface elevation and thus freeboard.

### **Design Considerations**

- Factors to be considered (cont.):
  - o For bank protection projects with bridge crossing, check proximity of piers to bank protection toe-down.
  - Toe-down on upstream side of grade-control structures must be toed-in to prevent undermining on upstream side.
  - o Maximum total scour can occur at any point in a cross section.
  - For pipeline crossings, lateral migration estimates are required to establish lateral extent of buried pipe.
  - Some scour equations may include an estimate for more than one scour component. Understand the results.

27

### **Determination of Total Scour**

- Total scour is the sum of all scour components that apply to study site:
  - o Long-term degradation
  - o General scour (design flood event)
  - o Local scour (e.g., pier, abutment, impinging flow)
  - o Bend scour
  - o Bed form scour
  - o Low-flow channel incisement

$$y_{ts} = y_{lt} + y_{gs} + y_{ls} + y_{bs} + y_{bf} + y_{lf}$$

8.8

### Weirs

- Generally goes completely across stream
- Used to create recreational and water supply reservoirs
- Orientation is perpendicular to flow



29

### Weirs

$$Q = CLH^{3/2}$$

- **Q** The total flow over the weir
- C Coefficient of discharge for weir flow, value depends on unit system and type of weir crest (sharp or broad)
- L Effective length of the weir
- **H** Height of water above the top of weir elevation

### **Culverts: General Information**

### Culverts are made up of:

- An **entrance** where water flows into the culvert
- A barrel, which is the closed conduit portion of the culvert
- An **exit**, where the water flows out of the culvert

31





### **Introduction to Culvert Terminology**

- The total flow capacity of a culvert depends upon the characteristics of the entrance as well as the culvert barrel and exit.
- The **tailwater** (TW) at a culvert is the depth of water on the exit or downstream side of the culvert, as measured from the downstream invert of the culvert.
- The tailwater depth depends on the flow rate and hydraulic conditions downstream of the culvert.
- The **invert** is the lowest point on the inside of the culvert at a particular cross section.

35

### **Introduction to Culvert Terminology**

- The Headwater (HW) is the depth from the culvert inlet invert to the energy grade line for the cross section just upstream of the culvert.
- The **Total Energy** at any location is equal to the elevation of the invert plus the specific energy (depth of water + velocity head) at that location.
- The upstream water surface (WS<sub>U</sub>) is obtained by placing that energy into the upstream cross section and computing the water surface that corresponds to that energy for the given flow rate.

### Multiple Manning n inside of Culvert and Partially Filled or Buried Culverts

- Natural stream bottoms
- Different n values due to low flows
- Something placed in the bottom of the culvert for fish passage
- Uses composite n analyses



37

### Flow Analysis for Culverts - Inlet Control

- The analysis of flow in culverts is quite complicated; therefore it is common to use the concepts of "inlet control" and "outlet control" to simplify the analysis.
- **Inlet control** (How much energy is required to push the Q into the culvert?)
  - This occurs when the flow capacity of the culvert entrance is less than the capacity of the culvert barrel – which is the usual case for design flood flows.

### Flow Analysis for Culverts – Outlet Control

**Outlet Control** (How much energy is required to push the water through and out of the barrel?)

- Occurs when the culvert flow capacity is limited by downstream conditions (high tailwater) and/or by the flow carrying capacity of the culvert barrel.
- Usually occurs when there is a high tailwater or the culvert is unusually long.
- If caused by high tailwater, you cannot improve the design because the problem is caused by downstream conditions.
- The highest of the two energies "controls" and is used to calculate the HW elevation (water elevation just upstream of the culvert).

39

### **Flow Analysis for Culverts**

| Factor                   | Inlet<br>Control          | Outlet<br>Control |
|--------------------------|---------------------------|-------------------|
| Headwater Elevation      | X                         | X                 |
| Inlet Area               | X                         | X                 |
| Inlet Edge Configuration | X                         | X                 |
| Inlet Shape              | X                         | Х                 |
| Barrel Roughness         | ni dagonia mia            | X                 |
| Barrel Area              | The state of the state of | X                 |
| Barrel Shape             | 2 200000                  | X                 |
| Barrel Length            | manon Apprilers.          | X                 |
| Barrel Slope             | * 6                       | Х                 |
| Tailwater Elevation      | DUD THE STATE OF          | Х                 |

degree, but may be neglected.

### **Computing Inlet Control Headwater**

- For inlet control, capacity depends primarily on the geometry of the culvert entrance.
- Extensive laboratory tests by the National Bureau of Standards, the Bureau of Public Roads, and other entities resulted in a series of equations that describe the inlet control headwater under various conditions.
- These equations form the basis of the FHWA inlet control nomographs shown in the "Hydraulic Design of Highway Culverts" publication [FHWA, 1985].

41

# Example of FHWA Culvert Charts Example of FHWA Culvert Charts | Sample of FHWA Culvert Charts | Figure Control of Charts | Figure Charts | F





### What is Grade Control?

- Prevention of Lowering of Channel elevation
  - o Water Surface
  - o Energy Grade
  - o Bed Slope
- Limits
  - o Valley Slope Maximum
  - o Cost / Space Minimum

45

### **Small Drop/Grade Control Structure**



### **Types of Grade Control**

- Bed Control Structure
  - o Provides a hard point to resist erosion
  - o Reduction in bed slope reduces bed scour
  - o May not have large upstream impact
- Hydraulic Control / Backwater Structure
  - o Provides reduction in energy slope
  - o Reduction in energy gradient reduces velocity reduces bed scour
  - o Has impact upstream due to backwater

47

### Why Consider Bed Stabilization / Grade Control?

- · Stream Incising / General Lowering
- Migrating Headcut / Knickpoint
- Infrastructure at Risk
- Slope changes (natural and human causes)
- Slope Re-adjustment back to stable slope





### **Streambed Stability Problem**

Pittman Wash, Las Vegas

Even concrete channels can be undermined



51

### GRADE CONTROL STRUCTURE FLOW HEADOUT



### **Design Requirements for Grade Control**

- Height of Drop / Change in WSE
- Drop Spacing usually placed at riffle location if in a meandering stream
- Flow Depths
- Scour Depths maximum is at the downstream end
- Evaluate Stability of structure
  - o Sliding
  - o Overturning
  - o Uplift

### **Spacing of Drop/Grade Structures**

- $H = (S_o S_f) L$ 
  - ∘ S₀ = Existing Slope
  - S<sub>f</sub> = Final (Desired/Stable) Slope
  - L = Horizontal distance of reach
  - o H = Total vertical drop in bed elevation
- N = H/h
  - o h = Vertical drop at each structure
  - N = Total number of structures
- Spacing of structures = L/N

55

### **Spacing Of Structures**



### **Example 5 Problem**

- Project length, L = 1,000 feet
- Equilibrium slope,  $S_0$ , = 0.01
- Existing slope, S<sub>f</sub> = 0.03 (too steep)
- Maximum drop for each structure, h = 3 feet

H = Total vertical drop =  $(S_o-S_f)$  L = (0.03 - 0.01) x 1000 = 20 feet

N = Total number of structures = H/h = 20/3 = say 7

Spacing of structures = L/N = 1,000/7 = 143 feet

57

### **Grade Control Structures**

- Drop Structure Types / Materials
  - o Concrete
  - o Sheetpile
  - o Rock
  - o Gabions
  - o Soil Cement
  - o Logs / Etc
  - o Combinations

### **Structures with Preformed Scour Holes**

- Scour holes will occur at any drop- man-made or natural.
- Structure must have sufficient launching rock.
  - o Prevent vertical scour immediately below weir
  - o Pre-formed scour hole with concrete, riprap and other non-erodible material is needed
  - o Serve as energy dissipaters for plunging flow
  - o Sizing must be based on experience or model studies

59

### **Drop Structure – Vertical Face**



Depth of Scour Below a Free Overfall



Grade Control w/1:1 Face Slope

DROP

6:1

12D<sub>s</sub>

Sketch of Scour Hole Downstream of Drop





### **Baffle Shoot Drop**



---

### **Gabion Drop Structures**



### Other Types of Control Structures: for Low Drops

### Rock

- o Newberry Rock Riffles
- Rock Vortex Weirs
- Rock Cross Vanes
- o Step Pools
- o Rock Chutes
- o Etc.

67

### **Newberry Rock Riffle**



Largest stones are placed at crest and on downstream face, upstream face is in compression due to water flow.









### Additional Drop Structure Types "Environmentally Friendly"

- Log
  - o Log Drops
  - o V-Log Drops
- Use in Small Streams

73

# Log Drop Weir Notch Weir Log Footer Log Flow Top of Bank Veir Notch Logs Scour Hole Toe of Bank





### **Simple Bed Controls**

- Rock Sills dumping of rock, concrete rubble, other non erodible material across channel
- Forms a hard point to resist erosive forces
- Can be placed on top of stream-bed or can be placed in a trench
- Sufficient volume is needed to counter general as well as local scour.

77

### Simple Bed Controls – Rock Sills





## Questions?